Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Dodecyl 2-nitrophenyl disulphide John Nicolson Low and James L. Wardell

Copyright © International Union of Crystallography

This paper is published electronically. It meets the data-validation criteria for publication in *Acta Crystallographica Section C*. The submission has been checked by a Section C Co-editor though the text in the "Comments" section is the responsibility of the authors.

electronic papers

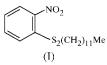
Acta Crystallographica Section C **Crystal Structure** Communications ISSN 0108-2701

Dodecyl 2-nitrophenyl disulphide

John Nicolson Low^a* and James L. Wardell^b

^aDepartment of Applied Physics and Electronic and Mechanical Engineering, University of Dundee, Nethergate, Dundee DD1 4HN, Scotland, and ^bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland

Correspondence e-mail: j.n.low@dundee.ac.uk


Received 23 December 1999 Accepted 7 January 2000

Data validation number: IUC0000010

Dodecyl 2-nitrophenyl disulphide, C18H29NO2S2, contains an intramolecular S···O contact of 2.623 (3) Å. The angle between the planes of the NO₂ group and the attached phenyl ring is $4.2 (3)^{\circ}$. The thermal vibrations of the atoms increase along the paraffinic chain. The nitroso O atom not involved in the $S \cdots O$ intramolecular contact also has high thermal motion. Attempts to create disordered models to allow for the thermal motions were unsuccessful.

Comment

Examination of the title structure, (I), with PLATON (Spek, 1999) showed that there were no solvent-accessible voids in the crystal lattice.

Experimental

Dodecyl 2-nitrophenyl disulphide was obtained from Bu₃SC₁₂H₂₅ and 2-O₂NC₆H₄SCl in CHCl₃ at room temperature. The solution was filtered, the filtrate was chromatographed on silica gel and the the product was recrystallized from ethanol (m.p. 314-316 K).

Crystal data

C18H29NO2S2 $M_r = 355.54$ Monoclinic, $P2_1/c$ a = 34.497 (7) Å b = 7.796 (2) Å c = 7.503 (2) Å $\beta = 95.12 \ (3)^{\circ}$ $V = 2009.8 (8) \text{ Å}^3$ Z = 4

 $D_x = 1.175 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 3701 reflections $\theta=2.37{-}26.01^\circ$ $\mu = 0.273 \text{ mm}^{-1}$ T = 150.0 (1) K Plate, yellow $0.2 \times 0.1 \times 0.1 \text{ mm}$

Data collection

208 parameters

H-atom parameters constrained

KappaCCD diffractometer	2053 reflections with $I > 2\sigma(I)$
φ and ω scans with κ offset scans	$R_{\rm int} = 0.081$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.01^{\circ}$
(SORTAV; Blessing, 1995, 1997)	$h = -42 \rightarrow 42$
$T_{\min} = 0.947, T_{\max} = 0.973$	$k = -9 \rightarrow 9$
17 677 measured reflections	$l = -9 \rightarrow 9$
3701 independent reflections	
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.1121P)^2]$
-	+ 0.0783P
Refinement on F^2	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.070$	+ 0.0783P

Molecule (I) crystallized in the monoclinic system; space group $P2_1/c$ from the systematic absences. H atoms were treated as riding atoms with C-H 0.92-0.99 Å. An attempt to refine atoms O22 and C17 as disordered atoms, on two sites as indicated by SHELXL97 (Sheldrick, 1997), with the site occupancies for each atom pair tied by a free-variable resulted in a higher R factor. The high thermal motion of the atoms is not unexpected since this compound has a very low melting point.

 $\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97 and WordPerfect macro PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the EPSRC, X-ray Crystallographic Service, University of Southampton, using an Enraf-Nonius KappaCCD diffractometer. The authors thank the staff for all there help and advice.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-37.

Blessing, R. H. (1997). J. Appl. Cryst. 30 421-426.

Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.

- Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-326. The Netherlands.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1999). PLATON. Version of January 1999. University of Utrecht, The Netherlands.